翻訳と辞書
Words near each other
・ Hoshneh
・ Hosho
・ Hosho (instrument)
・ Hoshu Sheedi
・ Hoshyar Zebari
・ Hoshū jugyō kō
・ Hosianna (album)
・ Hosianna Mantra
・ Hosianna, Davids son
・ Hosic report
・ Hosiden
・ Hosidia
・ Hosfeld
・ Hosfelt Gallery
・ Hosford
Hosford yield criterion
・ Hosford, Florida
・ Hosford-Abernethy, Portland, Oregon
・ HOSFU
・ Hosgri Fault
・ Hosh
・ Hosh al-Nufour
・ Hosh Arab
・ Hosh Bajed
・ Hosh Bannaga
・ Hosh Essa
・ Hosh Gureli
・ Hoshaiah
・ Hoshaiah Rabbah
・ Hoshana Rabbah


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hosford yield criterion : ウィキペディア英語版
Hosford yield criterion
The Hosford yield criterion is a function that is used to determine whether a material has undergone plastic yielding under the action of stress.
== Hosford yield criterion for isotropic plasticity ==

The Hosford yield criterion for isotropic materials 〔Hosford, W. F. (1972). ''A generalized isotropic yield criterion'', Journal of Applied Mechanics, v. 39, n. 2, pp. 607-609.〕 is a generalization of the von Mises yield criterion. It has the form
:
\tfrac|\sigma_2-\sigma_3|^n + \tfrac|\sigma_3-\sigma_1|^n + \tfrac|\sigma_1-\sigma_2|^n = \sigma_y^n \,

where \sigma_i, i=1,2,3 are the principal stresses, n is a material-dependent exponent and \sigma_y is the yield stress in uniaxial tension/compression.
Alternatively, the yield criterion may be written as
:
\sigma_y = \left(\tfrac|\sigma_2-\sigma_3|^n + \tfrac|\sigma_3-\sigma_1|^n + \tfrac|\sigma_1-\sigma_2|^n\right)^ \,.

This expression has the form of an ''L''''p'' norm which is defined as
:\ \|x\|_p=\left(|x_1|^p+|x_2|^p+\cdots+|x_n|^p\right)^ \,.
When p = \infty, the we get the ''L'' norm,
:\ \|x\|_\infty=\max \left\. Comparing this with the Hosford criterion
indicates that if ''n'' = ∞, we have
:
(\sigma_y)_ = \max \left(|\sigma_2-\sigma_3|, |\sigma_3-\sigma_1|,|\sigma_1-\sigma_2|\right) \,.

This is identical to the Tresca yield criterion.
Therefore, when ''n = 1'' or ''n'' goes to infinity the Hosford criterion reduces to the Tresca yield criterion. When ''n = 2'' the Hosford criterion reduces to the von Mises yield criterion.
Note that the exponent ''n'' does not need to be an integer.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hosford yield criterion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.